Please wait a minute...
浙江大学学报(工学版)
机械工程     
基于全局任务坐标系的二轴电液系统轮廓控制
熊义,魏建华,冯瑞琳,张强
浙江大学 流体传动及机电系统国家重点实验室,浙江 杭州 310027
Global task coordinate frame based contouring control for biaxial electrohydraulic system
XIONG Yi, WEI Jian hua, FENG Rui lin, ZHANG Qiang
State Key Laboratory of Fluid Power Transmission and Control, Zhejiang University, Hangzhou 310027, China
 全文: PDF(1281 KB)   HTML
摘要:

将基于正交全局任务坐标系(GTCF)的非线性自适应鲁棒控制(ARC)方法扩展应用于二轴电液系统的轮廓运动控制,以解决精确轮廓控制的难题.构造二轴电液系统在笛卡尔坐标系下的非线性动力学模型,并将该模型坐标变换于正交全局任务坐标系中.针对此变换后得到的强耦合非线性动力学模型及其中存在的参数不确定性、不确定非线性和建模误差,利用非线性自适应鲁棒控制方法综合二轴电液系统的轮廓运动控制器.该控制器可以灵活地调整轮廓控制刚度与跟踪控制刚度,可在保证系统稳定的前提下尽可能地提高轮廓控制的性能.将所提控制方法与基于交叉耦合的自适应鲁棒轮廓运动控制方法进行对比实验,结果表明,所提方法即使在单轴跟踪误差较大的情况下仍然实现了更为精确的轮廓控制,在实验条件下轮廓误差的均方根值在15 μm以内,表现出良好的轮廓控制性能与协调性.

Abstract:

The global task coordinate frame (GTCF) based nonlinear adaptive robust control (ARC) method was extended to design a contouring motion controller for biaxial electrohydraulic system, in order to solve precise control problem of contouring motion. The nonlinear dynamic model of the biaxial electrohydraulic system was developed in Cartesian coordinates, and the model is transformed into the GTCF. Considering the strongly coupled and highly nonlinear dynamic model of the electrohydraulic system obtained after coordinate transformation as well as parametric uncertainties, uncertain nonlinearities and external disturbance inherently in the model, the nonlinear adaptive robust control method was adopted to synthesize the contouring motion controller. In the designed controller, contouring control stiffness and tracking control stiffness can be regulated flexibly, which will potentially improve system stability without losing contouring control performance. The proposed GTCF based ARC method and cross-coupled ARC method were compared in experiment. As a result, the root mean square values of contour error for circular desired trajectory are less than 15μm while using GTCF based ARC method. The experimental results show that GTCF based ARC achieves satisfied contouring control performance and presents excellent coordinating ability.

出版日期: 2015-11-01
:  TH 137  
通讯作者: 魏建华,男,教授,博导.ORCID:0000 0003 1150 8216.     E-mail: jhwei@zju.edu.cn
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  

引用本文:

熊义,魏建华,冯瑞琳,张强. 基于全局任务坐标系的二轴电液系统轮廓控制[J]. 浙江大学学报(工学版), 10.3785/j.issn.1008 973X.2015.11.006.

XIONG Yi, WEI Jian hua, FENG Rui lin, ZHANG Qiang. Global task coordinate frame based contouring control for biaxial electrohydraulic system. JOURNAL OF ZHEJIANG UNIVERSITY (ENGINEERING SCIENCE), 10.3785/j.issn.1008 973X.2015.11.006.

链接本文:

http://www.zjujournals.com/eng/CN/10.3785/j.issn.1008 973X.2015.11.006        http://www.zjujournals.com/eng/CN/Y2015/V49/I11/2063

[1] 吴爱国,杨硕,张涵,等. 多缸锻造液压机的调平和跟踪控制[J]. 吉林大学学报:工学版,2014,44(4):1051-1056.
WU Ai guo, YANG Suo, ZHANG Han, et al. Leveling and tracking control of multi cylinder forging hydraulic press [J]. Journal of Jilin University: Engineering and Technology Edition, 2014, 44(4): 1051-1056.
[2] LU X J, HUANG M H. System decomposition based multilevel control for hydraulic press machine [J]. IEEE Transactions on Industry Electronics, 2012, 59(4): 1980-1987.
[3] 彭雄斌,龚国芳,陈馈,等. 管片拼装机提升缸模糊PID同步控制[J]. 浙江大学学报:工学版,2014,48(11):2002-2008.
PENG Xiong bin, GONG Guo fang, CHEN Kui, et al. Synchronization fuzzy PID control of lifting hydraulic cylinders for segment erector [J]. Journal of Zhejiang University: Engineering Science, 2014, 48(11): 2002-2008.
[4] 魏建华,国凯,熊义. 大型装备多轴电液执行器同步控制[J]. 浙江大学学报:工学版,2013,47(5):755-760.
WEI Jian hua, GUO Kai, XIONG Yi. Synchronized motion control for multi axis electro hydraulic system of large equipment [J]. Journal of Zhejiang University: Engineering Science, 2013, 47(5): 755-760.
[5] MUSIC O, ALLWOOD J M, KAWAI K. A review of the mechanics of metal spinning [J]. Journal of Materials Processing Technology, 2010, 210(1): 3-23.
[6] 赵升吨,赵承伟,王君峰,等. 现代旋压设备发展趋势的探讨[J]. 中国机械工程,2012,23(10):1251-1255.
ZHAO Sheng dun, ZHAO Cheng wei, WANG Jun feng, et al. Discussion about development trends of modern spinning equipment [J]. China Mechanical Engineering, 2012, 23(10): 1251-1255.
[7] 李继贞,韩冬,刘德贵,等. 1000kN大型立式数控强力旋压机[J]. 锻压技术,2014,39(2):1-5.
LI Ji zhen, HAN Dong, LIU De gui, et al. A large vertical NC power spinning machine of 1000kN [J]. Forging & Stamping Technology, 2014, 39(2): 1-5.
[8] BUTLER J, TOMIZUKA M. Trajectory planning for high speed multiple axis contouring systems [C]∥Proceedings of the American Control Conference. New York: IEEE, 1989: 87-94.
[9] YANG J Z, LI Z X. A novel contour error estimation for position loop based cross coupled control [J]. IEEE/ASME Transactions on Mechatronics, 2011, 16(4): 643-655.
[10] CHIU G T C, TOMIZUKA M. Contouring control of machine tool feed drive systems: a task coordinate frame approach [J]. IEEE Transactions on Control Systems Technology, 2001, 9(1): 130-139.
[11] CHEN C L, LIN K C. Observer based contouring controller design of a biaxial stage system subject to friction [J]. IEEE Transactions on Control Systems Technology, 2001, 16(2): 322-329.
[12] YAO B, HU C X, WANG Q F. An orthogonal global task coordinate frame for contouring control of biaxial systems [J]. IEEE/ASME Transactions on Mechatronics, 2012, 17(4): 622-634.
[13] YAO B, HU C X, WANG Q F. Coordinated adaptive robust contouring controller design for an industrial biaxial precision gantry [J]. IEEE/ASME Transactions on Mechatronics, 2012, 15(5): 728-735.
[14] 胡楚雄. 基于全局任务坐标系的精密轮廓运动控制研究[D]. 杭州:浙江大学,2010.
HU Chu xiong. Global task coordinate frame based precision contouring motion control [D]. Hangzhou: Zhejiang University, 2010.
[15] YAO B, BU F P, Reedy J, et al. Adaptive robust motion control of single rod hydraulic actuators: theory and experiments [J]. IEEE/ASME Transactions on Mechatronics, 2000, 5(1): 79-91.
[16] 陈刚,柴毅,魏善碧,等. 非线性电液伺服系统的多滑模模糊控制[J]. 农业机械学报,2008, 39(10):222-226.
CHEN Gang, CAI Yi, WEI Shan bi, et al. Multiple sliding mode fuzzy control for nonlinear electrohydraulic servo system [J]. Transactions of the Chinese Society for Agricultural Machinery, 2008, 39(10): 222-226.
[17] KOREN Y, LO C C. Advanced controllers for feed drives [J]. CIRP Proc. Manufacturing Systems, 1992, 41(2):689-698.
[18] BARTON K L, ALLEYNE A G. A cross coupled iterative learning control design for precision motion control [J]. IEEE Transactions on Control Systems Technology, 2008, 16(6): 1218-1231.

[1] 欧阳小平, 赵天菲, 李锋, 杨上保, 朱莹, 杨华勇. 飞机液压系统流量负载模拟器的变速积分PI控制[J]. 浙江大学学报(工学版), 2017, 51(6): 1111-1118.
[2] 丁孺琦, 徐兵, 张军辉. 负载口独立控制系统压力速度复合控制的耦合特性[J]. 浙江大学学报(工学版), 2017, 51(6): 1126-1134.
[3] 张强, 魏建华, 时文卓. 采用软溢流模糊PID控制器的液压垫压边力控制[J]. 浙江大学学报(工学版), 2017, 51(6): 1143-1152.
[4] 倪敬, 冯国栋, 王志强, 高殿荣, 许明. 内曲线式端面配流水液压马达的优化设计[J]. 浙江大学学报(工学版), 2017, 51(5): 946-953.
[5] 丁加新, 陈英龙, 周华. 水辅成型浮动芯注射对制品残余壁厚的影响[J]. 浙江大学学报(工学版), 2017, 51(5): 937-945.
[6] 徐兵, 苏琦, 张军辉, 陆振宇. 比例放大器驱动电路特性分析及控制器设计[J]. 浙江大学学报(工学版), 2017, 51(4): 800-806.
[7] 杜睿龙, 陈英龙, 周华, 王佳. 新型高速单柱塞轴向柱塞泵配流机构[J]. 浙江大学学报(工学版), 2016, 50(10): 1902-1910.
[8] 王建森, 刘耀林, 冀宏, 王鹏飞. 非全周开口滑阀运动过程液动力数值计算[J]. 浙江大学学报(工学版), 2016, 50(10): 1922-1926.
[9] 胡小东, 顾临怡, 张范蒙. 应用于数字变量马达的高速开关阀[J]. 浙江大学学报(工学版), 2016, 50(8): 1551-1560.
[10] 权凌霄, 李东, 刘嵩,李长春, 孔祥东. 膨胀环频域特性影响因素分析[J]. 浙江大学学报(工学版), 2016, 50(6): 1065-1072.
[11] 赵鹏宇,陈英龙,周华,杨华勇. 油液混合动力挖掘机势能回收及能量管理策略[J]. 浙江大学学报(工学版), 2016, 50(5): 893-901.
[12] 廖湘平,龚国芳,彭雄斌,吴伟强. 基于黏性耦合机理的TBM刀盘脱困特性[J]. 浙江大学学报(工学版), 2016, 50(5): 902-912.
[13] 赵鹏宇, 陈英龙, 孙军, 周华. 基于液压平衡的试油试采系统建模与仿真[J]. 浙江大学学报(工学版), 2016, 50(4): 650-656.
[14] 王玄, 陶建峰, 张峰榕, 吴亚瑾, 刘成良. 泵控非对称液压缸系统高精度位置控制方法[J]. 浙江大学学报(工学版), 2016, 50(4): 597-602.
[15] 刘统, 龚国芳, 彭左, 吴伟强, 彭雄斌. 基于液压变压器的TBM刀盘混合驱动系统[J]. 浙江大学学报(工学版), 2016, 50(3): 419-427.